US009170911B1

a2z United States Patent (10) Patent No.: US 9,170,911 B1
Atsatt et al. 45) Date of Patent: Oct. 27,2015
(54) PROTOCOL ERROR MONITORING ON AN (56) References Cited
INTERFACE BETWEEN HARD LOGIC AND
SOFT LOGIC U.S. PATENT DOCUMENTS
. 5734422 A * 3/1998 Maureretal ... 348/184
(71) Applicant: Altera Corporation, San Jose, CA (US) 5,844,917 A * 12/1998 Salemetal. ... 714/724

6,985,980 Bl 1/2006 Allegrucci
7,111,213 Bl 9/2006 Dastidar et al.

(72) Inventors: Sean R. Atsatt, Santa Clara, CA (US); 7478990 B2 1/2009 Brandyberry et al.

Samuel Johannes Hedinger, Austin, TX 9,003,246 B2 4/2015 Mozak et al.
(US); Steve Jahnke, Allen, TX (US); 2006/0107153 Al* 5/2006 Phamccocmvenn. 714/736
Lean Kim Ong, Pennatang Pauh (MY) 2006/0156157 Al* 7/2006 Has_elden etal. ... 714/746
2007/0220367 Al* 9/2007 Smithetal. ... 714/48
OTHER PUBLICATIONS

(73) Assignee: Altera Corporation, San Jose, CA (US)
U.S. Appl. No. 14/100,841, “Run-time recovery of malformed inter-

(*) Notice: Subject to any disclaimer, the term of this connect response,” Steve Jahnke, filed Dec. 9, 2013.
patent is extended or adjusted under 35 Qsys Interconnect 8, QI1151021, ISO 9001-2008 Registered,

ALTERA®, pp. 8-1-8-60, Nov. 4, 2013.
U.S.C. 154(b) by 265 days. U.S. Notice of Allowance dated Jun. 5, 2015 issued in USSN

14/100,841.
(21) Appl. No.: 13/938,014
* cited by examiner

(22) Filed: Jul. 9, 2013 Primary Examiner — Chae Ko
(74) Attorney, Agent, or Firm — Weaver Austin Villeneuve
(51) Int.ClL & Sampson LLP
GO6F 11/00 (2006.01) 57 ABSTRACT
GOOF 11730 (2006.01) Techniques and mechanisms detect deviations from a proto-
52) US.CL col being used to communicate between devices, for example,
2 p
CPC oo GO6F 11/3041 (2013.01) in hard logic (e.g., implemented as an ASIC or fixed circuitry)
(58) Field of Classification Search and soft logic (e.g., implemented in configurable logic of an
CPC oo, GO6F 11/0751; GO6F 11/0766 ~ FPGA). Techniques and mechanisms are described for
USPC oo 714/48,39 ~ detecting a variety of deviations from a protocol.
See application file for complete search history. 21 Claims, 11 Drawing Sheets

a hard logic system and a configurable logic
\ system 400

(Method for monitoring transactions between]

Receive transaction from master on the hard
logic system 410

!

Transmit the transaction to a slave on the
configurable logic system 420

'

Receive a return transaction from the
configurable logic system 430

!

Determine an error has occurred 440

'

Transmit an error message to the master on
the hard logic system 450

r
Done J
.

U.S. Patent Oct. 27, 2015 Sheet 1 of 11 US 9,170,911 B1

Master
105

FIGURE 1A

U.S. Patent Oct. 27, 2015 Sheet 2 of 11 US 9,170,911 B1

Master
105
Monitor Slave
115 120
Master 145

110

FIGURE 1B

U.S. Patent

Oct. 27, 2015

Sheet 3 of 11

Master
105

Monitor
115

US 9,170,911 B1

Master
110

k125

1/

FIGURE 1C

Slave
120

U.S. Patent Oct. 27, 2015 Sheet 4 of 11 US 9,170,911 B1

Master
105
Monitor Slave
115 120
Master

110

FIGURE 1D

U.S. Patent Oct. 27, 2015 Sheet 5 of 11 US 9,170,911 B1

100 Y 150 Y
Slave Monitor Master
120 115 105

FIGURE 1E

U.S. Patent Oct. 27, 2015 Sheet 6 of 11 US 9,170,911 B1

190 —\‘
Slave Monitor Master
120 15 105

FIGURE 1F

U.S. Patent Oct. 27, 2015 Sheet 7 of 11 US 9,170,911 B1

100 N 150 N

|
i
! g Slave 1
[210
I
|
|
|
|
|
:

156285408 | : B
|
|

Master é ' Monitor Slave 2

105 : 115 220
i :
|
|
|
|
|
|
|
|
|
|
! Slave 3
: 230
|
|
255 \

Kl B/ 51 B

FIGURE 2

U.S. Patent Oct. 27, 2015

Sheet 8 of 11

305b

305a
250~ 310 \\\
AEEEEEOEED MAEEEE OO
FIGURE 3A
250~ 310~ 315\
N N | I I K nnnaznanaa
FIGURE 3B
250~ 310~ 320\
LI CAICEIEIEIC IR
FIGURE 3C
250~ 310~ 325\
[Aldle Il nnoozoanon

FIGURE 3D

US 9,170,911 B1

U.S. Patent

Oct. 27,2015 Sheet 9 of 11

[Method for monitoring transactions between
a hard logic system and a configurable logic
\ system @ y

Receive transaction from master on the hard
logic system 410

'

Transmit the transaction to a slave on the
configurable logic system 420

Y

Receive a return transaction from the
configurable logic system 430

Y

Determine an error has occurred 44

Y

Transmit an error message to the master on
the hard logic system 450

Y

Done

FIGURE 4

US 9,170,911 B1

U.S. Patent Oct. 27, 2015 Sheet 10 of 11 US 9,170,911 B1

500

501
™ Input Stage
505 l
Generator Program
I
Logic Description 503
507 U
Synthesis Tool
313~ l
Verification Stage
519
N Physical Design Stage
523 l
Test

FIGURE 5

U.S. Patent Oct. 27, 2015 Sheet 11 of 11 US 9,170,911 B1

600
\ 614 610
| I
CDROM Interface
l I 606
|
<+—» Memory
Mass
> Processor
Storage
| <+—— Memory
608 602
[
I 604
Network — 612
Connection

FIGURE 6

US 9,170,911 B1

1

PROTOCOL ERROR MONITORING ON AN
INTERFACE BETWEEN HARD LOGIC AND
SOFT LOGIC

TECHNICAL FIELD

The present disclosure generally relates to integrated cir-
cuits. More specifically, the present disclosure relates to tech-
niques and systems for implementing a monitoring unit on an
interface between hard logic and soft logic.

DESCRIPTION OF RELATED ART

A programmable logic device (PLD) is a semiconductor
integrated circuit which contains logic circuitry and routing
that may be configured to perform a host of logic functions. In
a typical scenario, a designer uses electronic design automa-
tion (EDA) tools to create a design. These tools use informa-
tion regarding the hardware capabilities of a given program-
mable logic device to help the designer implement the custom
logic circuit using multiple resources available on that given
programmable logic device.

In some systems, a PL.D may interface with another device,
such as a fixed logic device such as an application specific
integrated circuit (ASIC), structured ASIC, processor, or
other device. Accordingly, the configurable logic (or soft
logic) of the PLD may interact with the fixed logic (or hard
logic) of the ASIC. Additionally, a single device may include
both hard logic and soft logic. For example, a device may
include a hardened processor system (i.e., hard logic) and
configurable logic (i.e., soft logic). To enable proper commu-
nication between the circuitry implemented in the hard logic
and the soft logic, a particular protocol may be followed.

However, if circuitry does not fully implement, or deviates,
from the protocol, failures may occur. Therefore, detecting,
preventing, and/or correcting errors in the protocol may pro-
vide a multitude of advantages. For example, detecting, pre-
venting, and/or correcting errors may prevent a system from
stalling or crashing.

SUMMARY

The techniques and mechanisms of the present disclosure
detect deviations from a protocol being used at an interface
between devices.

The present disclosure provides improved mechanisms for
detecting protocol errors between logic implemented in hard
logic and soft logic. In one example, a monitoring unit may be
implemented in soft logic between a master device imple-
mented in hard logic and a slave device implemented in soft
logic. Accordingly, communications between the master
device in the hard logic and the slave device in the soft logic
may be supervised by the monitoring unit. For instance, the
monitoring unit may detect deviations from a protocol
expected to be followed by communications between the
master and slave devices. Based on the deviations from the
protocol, the monitoring unit may alert the particular device
as to an error in the communication. Thus, an error may be
detected and appropriate action may be taken to prevent a
failure due to the deviation from the protocol.

These and other features will be presented in the following
specification and the accompanying figures, which illustrate
by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic of devices configured to commu-
nicate through an interface between hard logic and soft logic
according to an exemplary embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1B is a schematic of devices configured to communi-
cate through an interface between hard logic and soft logic via
aprotocol monitoring unit in soft logic according to an exem-
plary embodiment.

FIG. 1C is a schematic of devices configured to communi-
cate through an interface between hard logic and soft logic
according to an exemplary embodiment.

FIG. 1D is a schematic of devices configured to commu-
nicate through an interface between hard logic and soft logic
via a protocol monitoring unit in hard logic according to an
exemplary embodiment.

FIG. 1E is a schematic of devices configured to communi-
cate through an interface between hard logic and soft logic
according to an exemplary embodiment.

FIG. 1F is a schematic of devices configured to communi-
cate via a protocol monitoring unit according to an exemplary
embodiment.

FIG. 2 is a schematic of a master device in hard logic
configured to communicate with slave devices in soft logic
via a protocol monitoring unit according to an exemplary
embodiment.

FIG. 3A illustrates an example of detected disordered
transactions.

FIG. 3B illustrates an example of detecting unexpected
transactions.

FIG. 3C illustrates an example of limiting outstanding
transactions.

FIG. 3D illustrates an example of detecting a transaction
with an incorrect burst size.

FIG. 4 is a flowchart illustrating a process flow for moni-
toring transactions between a hard logic system and a config-
urable logic system.

FIG. 5 illustrates a technique for implementing a program-
mable chip.

FIG. 6 illustrates one example of a computer system.

DESCRIPTION OF PARTICULAR
EMBODIMENTS

The techniques and mechanisms of the present disclosure
are primarily described with reference to PLDs such as
FPGAs, but is not necessarily limited to PLDs. As disclosed
herein, the techniques and mechanisms may be implemented
in hard logic and soft logic in a variety of configurations. Both
hard logic and soft logic may be on a single device. Addition-
ally, hard logic and soft logic may be on separate devices or
chips. For example, a device may include a hardened proces-
sor system (i.e., hard logic) and configurable logic (i.e., soft
logic) on a single chip. Alternatively, an ASIC (i.e., hard
logic) with particular functionality may interface with con-
figurable logic of an FPGA (i.e., soft logic). In other imple-
mentations, a device in hard logic may communicate through
an interface, also in hard logic, to another device also config-
ured in hard logic. A device in soft logic may communicate
through an interface, also in soft logic, to another device also
configured in soft logic. Moreover, a device in hard logic may
communicate to another device in hard logic through an inter-
face in soft logic. A device in soft logic may communicate to
another device in soft logic through an interface in hard logic.
The present disclosure provides examples of several, but not
all, configurations.

FIG. 1A is an example of a schematic of devices configured
to communicate through an interface between hard logic and
soft logic. In the implementation of FIG. 1A, master device
105 may reside in hard logic 100, e.g. hardened system-on-
a-chip (SOC) logic. For example, master 105 may be a hard

US 9,170,911 B1

3

processor system (HPS) or an application specific integrated
circuit (ASIC) designed for a particular functionality.

Master 105 may be configured to communicate with slave
120. In an implementation, slave 120 may be programmed or
configured within soft logic 150, such as the configurable
logic of a field programmable gate array (FPGA). For
example, a variety of memories or other peripherals may be
instantiated within the configurable logic of the FPGA.
Accordingly, communications 180 from master 105 to slave
120 may cross from hard logic 100 to soft logic 150, i.e. a
device on hard logic to a device on soft logic.

In some implementations, communications 180 may rely
upon a protocol. For example, master 105 and slave 120 may
communicate with each other using Advanced eXtensible
Interface (AXI), Avalon, or other protocols that may be used
to communicate data between devices on an FPGA fabric
(i.e., soft logic 150) and HPS logic (i.e., hard logic 100).

However, components and interconnect implemented
within the soft logic of an FPGA may include a variety of
design flaws. For example, the soft logic of an FPGA may be
reconfigured multiple times as part of an iteration loop of the
design process, incrementally fixing bugs. In another
example, a user’s design configured in the soft logic of the
FPGA may not properly follow the protocol being used.
Accordingly, a design in an FPGA may not fully implement
the particular protocol being used to facilitate communica-
tions between master 105 and slave 120. A design configured
within the soft logic of an FPGA and not fully implementing,
or deviating, from the protocol used by master 105 may cause
failures within master 105 in hard logic 100.

For example, master 105 may be an HPS and slave 120 may
be memory configured within soft logic 150. Accordingly,
master 105 may initiate a transaction requesting data at a
particular memory location. However, if the protocol requires
transactions to be returned within a set amount of time, but
slave 120 does not respond with the requested data, master
105 may be left “hanging,” or stalled while waiting for the
data to be received.

FIG. 1B is an example of a schematic of devices configured
to communicate through an interface between hard logic and
soft logic via a protocol monitoring unit. In the implementa-
tion of FIG. 1B, master device 105 may also reside in hard
logic 100. Additionally, as in FIG. 1A, a slave device 120 may
be instantiated in soft logic 150. However, communications
between master 105 and slave 120 may be through monitor
115. For example, master 105 may provide communication
125 to monitor 115. The monitor may forward the communi-
cation to slave 120 via communication 155. Responses from
slave 120 to master 105 may also be monitored and forwarded
by monitor 115.

In FIG. 1B, monitor 115 is also instantiated within soft
logic 150. In some implementations, monitor 115 may verify
communications between master 105 and slave 120 to ensure
that the rules of the particular interface protocol are being
complied with. For example, as previously discussed, master
105 may send a request to slave 120, such as memory, for data
at a particular memory location. Under the protocol being
used to facilitate communications between master 105 and
slave 120, slave 120 may be required to respond within a
particular time frame. However, if slave 120 fails to respond
to the request by master 105, master 105 may stall while it
waits for the request.

Accordingly, monitor 115 may detect deviations from the
protocol. As such, monitor 115 may prevent errors that may
cause a crash of the system operating in hard logic 100 from
propagating from soft logic 150 to master 105 in hard logic
100. Monitor 115 may also finish any hanging acknowledge-

30

40

45

50

55

4

ments or requests that master 105 is expecting from slave 120
s0 as to ensure that the system on hard logic 100 may not stall,
and therefore, recover from any deviations from the expected
protocol. Monitor 115 may also log errors and/or alert master
105 to any detected errors.

In some implementations, monitor 115 may include a vari-
ety of inputs and outputs. For example, monitor 115 may be
able to communicate with master 105 and slave 120 via
communications 125 and 155. Additionally, monitor 115 may
include an interrupt request (IRQ) input/output (I/O) 135 to
alert a device on hard logic 100, such as master 105, that an
error has occurred in a transmission received from slave 120.
Accordingly, when an error is detected, the error may be
logged, and an interrupt flag or signal may be asserted to alert
master 105 as to a deviation from the protocol. As such,
master 105 may be able to handle the protocol error or devia-
tion without crashing or stalling the system.

Monitor 115 may also include control and status registers
(CSR) accessible through a CSR /O 145. CSR may be used
to store data regarding detected errors or deviations from the
protocol used. CSR input/output 145 may provide another
device access to data regarding the errors. Data that may be
stored in the CSR include transaction IDs, destination
addresses, data burst types, data burst lengths (e.g., number of
bits or words), data sizes, time the transaction was sent by the
master, time the slave responded to the request from the
master, master id, slave id, and other characteristics.

In an implementation, hard logic 100 may include a variety
of'devices. Forexample, in FIG. 1B, master 110 is also in hard
logic. Master 110 may be used to access CSR port 145 of
monitor 115 via communication 140. In other implementa-
tions, master 105 may be able to access CSR /O 145.

FIG. 1C is another implementation of devices configured
to communicate through an interface between hard logic and
soft logic. In FIG. 1C, master 105 in hard logic 100 may
communicate directly with slave 120. Accordingly, transac-
tions between master 105 and slave 120 are not through
monitor 105. However, monitor 115 may still monitor the
transactions between master 105 and slave 120 because com-
munication 125 is also provided as an input to monitor 115. In
FIG. 1C, the interconnect of communication 125 branches off
in soft logic 150 to provide access for monitor 115. As such,
communication 125 crosses the interface between hard logic
100 and soft logic 150 once. However, in other implementa-
tions, the interconnect may branch off in hard logic 100.
Accordingly, the interconnect of communication 125 may
cross the hard logic 100 and soft logic 150 interface twice.

In FIG. 1C, though master 105 and slave 120 may have
direct communication with each other, monitor 115 may still
monitor the communications to ensure that the requirements
of the protocol are being followed. Accordingly, if slave 120
transmits a response that deviates from the communication
protocol back to master 105, monitor 115 may detect the
deviation and take appropriate precautions. For example,
monitor 115 may assert an IRQ flag or signal when an error is
detected. Accordingly, master 110 may review the status of
the IRQ) signal before processing communications from slave
120.

FIG. 1D is another implementation of devices configured
to communicate through an interface between hard logic and
softlogic. In FIG. 1D, monitor 115 is in hard logic 100 rather
than soft logic 150. Moreover, a second slave device, slave
160, is also in hard logic. Accordingly, monitor 115 may
monitor communications from slave devices in both hard
logic and soft logic. In other implementations, monitor 115
may be in soft logic 150 and monitor slave devices imple-
mented in both hard logic 100 and soft logic 150.

US 9,170,911 B1

5

In some implementations, monitor 115 may ensure proper
use of a protocol for multiple master and slave devices. For
example, in FIG. 1D, monitor 115 also monitors transactions
related to master 110. Accordingly, both masters 105 and 110
may issue transactions to slaves 120 and 160. Communica-
tions between the four devices may be monitored by monitor
115.

FIG. 1E is another implementation of devices configured to
communicate through an interface between hard logic and
soft logic. Unlike FIGS. 1A-1D, in FIG. 1E, master 105
resides in soft logic 150 and slave 120 resides in hard logic
100. Accordingly, transactions may be issued from soft logic
150 to slave devices on hard logic 100. Additionally, FIG. 1F
is another schematic of devices configured to communicate
via a protocol monitoring unit. In FIG. 1F, master 105, moni-
tor 115, and slave 120 reside in logic 190. Logic 190 may be
soft logic or hard logic. As such, the devices may communi-
cate within the same type of logic.

FIG. 2 is an example of a schematic of devices configured
to communicate through an interface between hard logic and
soft logic via a protocol monitoring unit. In FIG. 2, master
105 may be designed in hard logic 100. Monitor 115 may be
designed in soft logic 150. Soft logic 150 may also include
multiple slave devices, such as slave 1 210, slave 2 220, and
slave 3 230.

Slaves 210-230 may be configured on the same FPGA
fabric, i.e. on a single FPGA, or on multiple FPGAs. In some
implementations, monitor 115 may be on the same FPGA as
a slave. In other implementations, monitor 115 may be con-
figured on its own FPGA.

Monitor 115 may ensure that communications between
master 105 and slaves 210-230 are following a particular
communication protocol. Accordingly, monitor 115 may
include memory 250 which may be used to log information on
the characteristics of any transactions between master 105
and slaves 210-230. As previously discussed, monitor 115
may log, for example, transaction IDs, destination addresses,
source of transactions, data burst types, data burst lengths
(e.g., number of bits or words), data sizes, time the transaction
was sent by the master, time the transaction from the slave
was received at monitor 105, sequence of transactions,
sequence of destinations of transactions, master id, and slave
id.

For example, memory 250 may provide slave transaction
sequence 255. Slave transaction sequence 255 may record the
sequence of transactions from master 105 to particular slaves
210-230. As such, slave transaction sequence 255 may
specify the order in which slaves 210-230 were addressed by
master 105 when issuing transactions that are monitored via
monitor 115. In slave transaction sequence 255, the numeral
“1” corresponds to slave 1 210, “2” corresponds to slave 2
220, and “3” corresponds to slave 3 230.

By logging data, Monitor 115 may detect a variety of
errors. For example, FIGS. 3A-D illustrate a subset of the
types of errors detected by monitor 115.

FIG. 3A depicts an implementation of detection of disor-
dered transactions by monitor 115. For example, monitor 115
may store in memory 250 a sequence of transactions or com-
munications issued from master 105 to slaves 210-230 of
FIG. 2. In the example of FIG. 3A, master 105 has stored a
sequence of transactions in memory 250 indicating that the
destination of transactions from master 105 to slave “1,”2.”,
“3,743,792,7 41,71, 1,72, and “1.” Each transaction may
include a different type of operation. For example, the
sequence of transactions may indicate a mix of read and write
commands to memory peripherals in soft logic 150.

20

25

30

40

45

6

In FIG. 3A, received transactions 310 may represent a
sequence of transactions returned from slaves 210-230 in
response to a request from master 105. The numerals in
received transactions 310 correspond to the particular slave
that the transaction is from. Accordingly, received transac-
tions 310 should match the sequence of transactions stored in
memory 250. However, in the example of FIG. 3A, transac-
tions 3054 and 3055 are switched. That is, transaction 3055
should have been returned before transaction 305a. Accord-
ingly, a disordered transaction, or sequence of transactions,
may be detected. In some implementations, the disordered
transaction may be an indication of a violation of a protocol’s
specification. As such, an interrupt signal or flag may be
asserted to alert the system on hard logic 100 that a deviation
or error in the communication protocol has occurred in soft
logic 150.

In some implementations, each type of operation (e.g., a
write, a read, etc.) may have its own sequence of transactions
monitored by monitor 115. Accordingly, disordered write
transactions may be detected separately from disordered read
transactions.

FIG. 3B depicts an implementation of detection of an unex-
pected transaction. As previously discussed, memory 250
may include a list of transactions. In FIG. 3B, memory 250
indicates a series of transactions to slave 210 (i.e., slave 1).
FIG. 3B also shows a sequence of transactions 310 received
by monitor 105.

In FIG. 3B, transaction 315 may be considered to be an
unexpected transaction because memory 250 indicates that
master 105 did not submit a transaction to slave 220 (i.e.,
slave 2). That is, master 105 is not expecting a response from
slave 220. Rather, master 105 is only expecting responses
from slave 210 (i.e., slave 1). Accordingly, transaction 315
may be determined to be an unexpected transaction. As such,
the unexpected transaction may be designated as a violation
of the protocol being used to communicate between master
105 in hard logic 100 to the slave devices in soft logic 150.
Monitor 115 may assert an IRQ signal to alert master 105 to
the unexpected transaction.

In some implementations, monitor 115 may also control
the number of outstanding transactions issued by master 105.
For example, monitor 115 may throttle, or limit, the maxi-
mum number of outstanding transactions that may be issued
by master 105 in order to ensure proper tracking of transac-
tions, for example, due to limitations of monitor 115 or to
reduce errors related to a high number of outstanding trans-
actions. FIG. 3C depicts an implementation of detection of
limiting the number of outstanding transactions.

In FIG. 3C, memory 250 may track ten transactions at a
time. Transactions 325 indicates the transactions received at
monitor 115 from master 105. Accordingly, the first ten trans-
actions of transactions 325 are tracked, as indicated by
memory 250. The ten transactions are pending results from
slaves 210-230. However, transaction 320 may indicate an
eleventh transaction that may be forwarded to slave 210 (i.e.,
slave 1) from master 105 via monitor 115. In some imple-
mentations, monitor 115 may throttle, or delay, the issuance
of transaction 320 because the limit of outstanding transac-
tions (i.e., ten) has already been reached. As such, an IRQ
signal may be asserted by monitor 115 to indicate that the
number of pending transactions has been reached. Accord-
ingly, master 105 may be throttled, i.e. limit the number of
outstanding transactions. The IRQ may be asserted upon
memory 250 reaching the maximum number of transactions.
Alternatively, the IRQ may be asserted upon receipt of the

US 9,170,911 B1

7

first transaction beyond the maximum number of transactions
(e.g., the 117 transaction for a limit of 10 transactions to be
tracked).

In some implementations, the number of outstanding trans-
actions may be changed. For example, monitor 115 may
increase or decrease the number of allowable outstanding
transactions issued by master 105 and awaiting from slaves
210-230. In an implementation, if errors are detected, monitor
115 may decrease the number of allowable outstanding trans-
actions. As such, the performance of master 105 may be
decreased, but reliability potentially increased, due to moni-
tor 115 throttling the total number of outstanding transactions
at slaves 210-230.

In other implementations, monitor 115 initially may not
limit the number of outstanding transactions. However, upon
detection of errors, throttling by monitor 115 may begin to
ensure that all outstanding transactions may be tracked.

In some implementations, different types of transactions
may have different limits to the maximum number of out-
standing transactions. For example, writing to a memory
peripheral (e.g., slave 1) may be limited to 10 outstanding
transactions. However, reading from a memory peripheral
may be limited to 20 outstanding transactions. In other imple-
mentations, each of slaves 210-230 may have separate limits
to outstanding transactions. For example, transactions to
slave 210 may be limited to 10 outstanding transactions.
However, transactions to slave 220 may be limited to 20
outstanding transactions.

FIG. 3D depicts an implementation of detection of a trans-
action with an incorrect burst size. If a slave in soft logic 150
sends a transaction back to a master in hard logic 100, the
master may wait until the entire transaction is received. How-
ever, if the returned transaction is supposed to be eight words
of data, but a slave begins transmitting five hundred words,
the master in the hard logic may stall until the slave finishes
the transmission of the five hundred words. Accordingly,
detection of incorrect burst sizes may prevent stalling of the
master.

In the implementation of FIG. 3D, memory 250 may also
include data regarding expected burst sizes of transactions
that master 105 is expecting from slaves 210-230. For
example, certain transactions returned from soft logic 150
may be four or eight words. Accordingly, memory 250 may
store the expected burst size of transactions. In FIG. 3D,
received transactions 310 may be checked with the recorded
expected transaction size. As such, transaction 325 may be
determined to be violating the protocol as it is expected to be
8 words, but only 4 words were received.

In other implementations, monitor 115 may determine the
type of transaction that is coming from slaves 210-230 and the
associated burst size for the type of transaction. Thus, monitor
115 may be able to determine an error has occurred when the
burst of data from the slave continues past the expected burst
size. For example, monitor 115 may determine that a trans-
action from a slave is a result of a read request from a master.
Accordingly, monitor 115 may determine that read requests
have burst lengths of a particular size or length, and thus,
determine if the transaction deviates from the protocol.

In an implementation, monitor 115 may also determine
whether a response does not occur within a time window. For
example, master 105 may issue a series of read and write
responses to slave 210. Each issued read and write transaction
may have a specified time window for a slave to respond
within. If a response from a slave occurs after the time win-
dow, then monitor 115 may determine that the transaction
violates the protocol.

10

15

20

25

30

35

40

45

50

55

60

65

8

In some implementations, the time window may be
changed. For example, if a large number of errors are occur-
ring, the time window may be programmed to increase. In
some implementations, the time window of a write response
may be increased, while the time window of a read response
may be decreased or stay the same, and vice versa.

In another implementation, the time window and number
of outstanding transactions may both be changed to deal with
errors occurring in soft logic 150.

Monitor 115 may also determine whether there is an iden-
tification mismatch on write data relative to a command. For
example, as in FIG. 1E, master 105 may reside in soft logic
150. Master 105 may issue a write transaction to slave 120. In
animplementation, a write command may be a separate trans-
action from write data. However, the write command may be
associated with the write data with an identifier. Accordingly,
master 105 may issue a write transaction request with a par-
ticular identification followed by the write data, or vice versa.
As such, monitor may be able to determine if the write com-
mand and write data have the same identifier. If not, an error
may be detected. Accordingly, the system may not stall upon
a write command awaiting its corresponding write data.

Additionally, monitor 115 may generate error responses
for all outstanding transactions upon a first transaction with
an error. Accordingly, all outstanding transactions may be
marked as errors. Master devices may then “unwind” its state
to a point before the first transaction marked as an error. Upon
receiving an interrupt generated by monitor 105, a master
may unwind its state and then clear the interrupt via the CSR
interface, as previously discussed. New transactions may be
monitored by monitor 115 upon clearing of the interrupt
through the CSR interface.

In some implementations, all outstanding transactions for
all masters may be marked as errors. For example, in the
configuration of FIG. 1D, upon a first detected error for a
transaction associated with master 105, all outstanding trans-
actions, including transactions for master 110, may be
marked as in error by monitor 115. In other implementations,
only transactions related to master 105 may be marked as
errors whereas outstanding transactions for master 110 may
be undisturbed by monitor 115.

Data from a sensor may be used to modify or reconfigure
monitor 115. In an implementation, master 110 or monitor
115 may be configured to communicate with a temperature
sensor, such as an on-chip diode temperature sensor or an
off-chip ambient temperature sensor, and obtain data regard-
ing temperature conditions. Temperature variations may alter
the performance of a device. Accordingly, if the temperature
reaches a threshold, monitor 115 may be modified. For
example, if temperature increases and reaches a threshold
temperature, monitor 115 may be configured to change any
number of the aforementioned parameters (e.g., number of
outstanding transactions, time window, etc.) used by monitor
115. Data from other sensors may determine signal integrity
issues, battery levels, or other conditions that may lead to the
modification of monitor 115. For example, upon a battery
source (e.g., in a mobile device) reaching a threshold, the
number of allowed outstanding transactions may be lowered,
as previously discussed.

Monitor 115 may also detect a first set of errors, for
example, in one type of protocol, but be reconfigured to detect
a second set of errors in another protocol. In an implementa-
tion, upon an increase in detected errors or data from a sensor,
additional monitoring methodologies may be implemented.
For example, monitor 115 may initially only detect disor-

US 9,170,911 B1

9

dered transactions. However, upon detection of errors, moni-
tor 115 may be reconfigured or reprogrammed to also detect
unexpected transactions.

In some implementations, monitor 115 may also be con-
figured to enable slave devices. In some configurable devices
such as FPGAs, partial reconfiguration may be used to con-
figure new logic while other logic is operational. For
example, a master may communicate with a first slave device
in soft logic, such as a memory unit. When the memory unit
reaches a particular storage capacity threshold (e.g., 90%), a
second memory unit may be configured in soft logic. How-
ever, the second memory unit may initially be disabled, but
enabled by monitor 115 upon receipt of a transaction from the
master addressing the second memory unit. Accordingly,
because the second memory unit was disabled, transactions
such as unexpected transactions may not occur. In another
implementation, the second memory unit may be enabled
when configured, but monitor 115 may ignore transactions
received from the second memory unit the master addresses it
for the first time. Accordingly, if the second memory unit
deviates from the protocol before being addressed by the
master, for example, by transmitting an unexpected transac-
tion, monitor 115 may ignore the transaction. Even though an
unexpected transaction was received by monitor 115, the
master may not be alerted to the protocol error, and therefore,
not unwind its state, as previously discussed. Additionally,
outstanding transactions may be maintained (i.e., transac-
tions associated with the first memory unit may not be dis-
carded).

In an implementation, monitor 115 may also store the
number of errors originating from slave devices. If the num-
ber of errors from a particular device reaches a threshold
number, the slave device may be disabled. Additionally, the
slave device may be reconfigured (e.g., via partial reconfigu-
ration) elsewhere in configurable logic. For example, a fab-
rication defect may cause failures (e.g., a functional timing
failure) in a circuit. Accordingly, it may be beneficial to
reconfigure the configuration elements (e.g., configuration
random access memory (CRAM) cells, antifuses, fuses, flash,
etc.) associated with the slave device so as to try to avoid the
fabrication defect. New configuration elements may be used
to implement the logic of the slave device. In some imple-
mentations, the slave device may use the same configuration
elements associated with placement of logic (i.e., the logic
may be at the same locations), but use different configuration
elements associated with routing resources (i.e., the intercon-
nect between the logic may change), and vice versa. Monitor
115 may reconfigure the slave devices. Alternatively, monitor
115 may provide data regarding the slave device to be recon-
figured to other logic or circuitry which may reconfigure the
slave device.

FIG. 4 shows a flowchart of an example of a method 400 for
monitoring transactions between a hard logic system and a
soft logic system (e.g., between an ASIC and an FPGA, a
hardened processor system and configurable logic on a
device, etc.). In method 400, a transaction from a master (e.g.,
a master in hard logic) may be received by a monitoring unit
at block 410. At block 420, the monitoring unit may transmit
the transaction to a slave on the configurable logic system
(e.g., a peripheral configured in soft logic of an FPGA). At
block 430, the monitoring unit may receive a transaction from
a slave device in the configurable logic system. Accordingly,
at block 440, the monitoring unit may determine if an error
has occurred, as previously discussed with respect to FIG. 3.
At block 450, if an error is detected, a message may be
transmitted to the master on the hard logic system. For
example, the monitoring unit may assert an IRQ signal. Addi-

10

15

20

25

30

35

40

45

50

55

60

65

10

tionally, the monitoring unit may finish any necessary
acknowledgement or requests that the master is expecting
from the slave.

As previously discussed, in some implementations, the
monitoring unit may be implemented in the soft logic of a
programmable chip (e.g., FPGAs, CPLDs, etc.). FIG. 5 illus-
trates a technique for implementing a programmable chip. An
input stage 501 receives selection information typically from
a user for logic such as a processor core as well as other
components to be implemented on an electronic device. In
one example, the input received is in the form of a high-level
language program. A generator program 505 creates a logic
description and provides the logic description along with
other customized logic to any of a variety of synthesis tools,
place and route programs, and logic configuration tools to
allow a logic description to be implemented on an electronic
device.

In one example, an input stage 501 often allows selection
and parameterization of components to be used on an elec-
tronic device. The input stage 501 also allows configuration
otf’hard coded logic. In some examples, components provided
to an input stage include intellectual property functions,
megafunctions, and intellectual property cores. The input
stage 501 may be a graphical user interface using wizards for
allowing efficient or convenient entry of information. The
input stage may also be a text interface or a program reading
a data file such as a spreadsheet, database table, or schematic
to acquire selection information. The input stage 501 pro-
duces an output containing information about the various
modules selected.

Intypical implementations, the generator program 505 can
identify the selections and generate a logic description with
information for implementing the various modules. The gen-
erator program 505 can be a Perl script creating HDL files
such as Verilog, Abel, VHDL,, and AHDL files from the mod-
ule information entered by a user. In one example, the gen-
erator program identifies a portion of a high-level language
program to accelerate. The other code is left for execution on
a processor core. According to various embodiments, the
generator program 505 identifies pointers and provides ports
for each pointer. One tool with generator program capabilities
is System on a Programmable Chip (SOPC) Builder available
from Altera Corporation of San Jose, Calif. The generator
program 505 also provides information to a synthesis tool 507
to allow HDL files to be automatically synthesized. In some
examples, a logic description is provided directly by a
designer. Hookups between various components selected by a
user are also interconnected by a generator program. Some of
the available synthesis tools are Leonardo Spectrum, avail-
able from Mentor Graphics Corporation of Wilsonville, Oreg.
and Synplify available from Synplicity Corporation of
Sunnyvale, Calif. The HDL files may contain technology
specific code readable only by a synthesis tool. The HDL files
at this point may also be passed to a simulation tool.

As will be appreciated by one of skill in the art, the input
stage 501, generator program 505, and synthesis tool 507 can
be separate programs. The interface between the separate
programs can be a database file, a log, or simply messages
transmitted between the programs. For example, instead of
writing a file to storage, the input stage 501 can send mes-
sages directly to the generator program 505 to allow the
generator program to create a logic description. Similarly, the
generator program can provide information directly to the
synthesis tool instead of writing HDL files. Similarly, input
stage 501, generator program 505, and synthesis tool 507 can
be integrated into a single program.

US 9,170,911 B1

11

A user may select various modules and an integrated pro-
gram can then take the user selections and output a logic
description in the form of a synthesized netlist without inter-
mediate files. Any mechanism for depicting the logic to be
implemented on an electronic device is referred to herein as a
logic description. According to various embodiments, a logic
description is an HDL file such as a VHDL, Abel, AHDL, or
Verilog file. A logic description may be in various stages of
processing between the user selection of components and
parameters to the final configuration of the device. According
to other embodiments, a logic description is a synthesized
netlist such as an Electronic Design Interchange Format Input
File (EDF file). An EDF file is one example of a synthesized
netlist file that can be output by the synthesis tool 507. A
synthesis tool 507 can take HDL files and output EDF files.
Tools for synthesis allow the implementation of the logic
design on an electronic device. Some of the available synthe-
sis tools are Leonardo Spectrum, available from Mentor
Graphics Corporation of Wilsonville, Oreg. and Synplify
available from Synplicity Corporation of Sunnyvale, Calif.
Various synthesized netlist formats will be appreciated by one
of skill in the art.

A verification stage 513 typically follows the synthesis
stage 507. The verification stage checks the accuracy of the
design to ensure that an intermediate or final design realizes
the expected requirements. A verification stage typically
includes simulation tools and timing analysis tools. Tools for
simulation allow the application of inputs and the observation
of outputs without having to implement a physical device.
Simulation tools provide designers with cost effective and
efficient mechanisms for both functional and timing verifica-
tion of a design. Functional verification involves the circuit’s
logical operation independent of timing considerations.
Parameters such as gate delays are disregarded.

Timing verification involves the analysis of the design’s
operation with timing delays. Setup, hold, and other timing
requirements for sequential devices such as flip-flops are
confirmed. Some available simulation tools include Synopsys
VCS, VS8, and Scirocco, available from Synopsys Corpora-
tion of Sunnyvale, Calif. and Cadence NC-Verilog and NC-
VHDL available from Cadence Design Systems of San Jose,
Calif. After the verification stage 513, the synthesized netlist
file can be provided to physical design tools 519 including
place and route and configuration tools. A place and route tool
locates logic cells on specific logic elements of a target hard-
ware device and connects wires between the inputs and out-
puts of the various logic elements in accordance with logic
and security provided to implement an electronic design. The
iterative technique may be transparent to the user, but the
resulting device can be physically tested at 523.

For programmable logic devices, a programmable logic
configuration stage can take the output of the place and route
tool to program the logic device with the user selected and
parameterized modules. According to various embodiments,
the place and route tool and the logic configuration stage are
provided in the Quartus Development Tool, available from
Altera Corporation of San Jose, Calif. As will be appreciated
by one of skill in the art, a variety of synthesis, place and
route, and programmable logic configuration tools can be
used using various techniques of the present invention.

As noted above, different stages and programs can be inte-
grated in a variety of manners. According to one embodiment,
the input stage 501, the generator program 505, the synthesis
tool 507, the verification tools 513, and physical design tools
519 are integrated into a single program. The various stages
are automatically run and transparent to a user. The program
can receive the user-selected modules, generate a logic

40

45

50

55

60

12

description depicting logic for implementing the various
selected modules, and implement the electronic device. As
will be appreciated by one of skill in the art, HDL files and
EDF files are mere examples of a logic description. Other file
formats as well as internal program representations are other
examples of a logic description.

FIG. 6 illustrates one example of a computer system. The
computer system 600 includes any number of processors 602
(also referred to as central processing units, or CPUs) that are
coupled to devices including memory 606 (typically a ran-
dom access memory, or “RAM”), memory 604 (typically a
read only memory, or “ROM?”). The processors 602 can be
configured to generate an electronic design. As is well known
in the art, memory 604 acts to transfer data and instructions
uni-directionally to the CPU and memory 606 are used typi-
cally to transfer data and instructions in a bi-directional man-
ner.

Both of these memory devices may include any suitable
type of the computer-readable media described above. A mass
storage device 608 is also coupled bi-directionally to CPU
602 and provides additional data storage capacity and may
include any of the computer-readable media described above.
The mass storage device 608 may be used to store programs,
data and the like and is typically a secondary storage medium
such as a hard disk that is slower than memory. The mass
storage device 608 can be used to hold a library or database of
prepackaged logic or intellectual property functions, as well
as information on generating particular configurations. It will
be appreciated that the information retained within the mass
storage device 608, may, in appropriate cases, be incorpo-
rated in standard fashion as part of memory 606 as virtual
memory. A specific mass storage device such as a CD-ROM
614 may also pass data uni-directionally to the CPU.

CPU 602 is also coupled to an interface 610 that includes
one or more input/output devices such as such as video moni-
tors, track balls, mice, keyboards, microphones, touch-sensi-
tive displays, transducer card readers, magnetic or paper tape
readers, tablets, styluses, voice or handwriting recognizers, or
other well-known input devices such as, of course, other
computers. The CPU 602 may be a design tool processor.
Finally, CPU 602 optionally may be coupled to a computer or
telecommunications network using a network connection as
shown generally at 612. With such a network connection, it is
contemplated that the CPU might receive information from
the network, or might output information to the network in the
course of performing the above-described process steps. It
should be noted that the system 600 might also be associated
with devices for transferring completed designs onto a pro-
grammable chip. The above-described devices and materials
will be familiar to those of skill in the computer hardware and
software arts.

Although many of the components and processes are
described above in the singular for convenience, it will be
appreciated by one of skill in the art that multiple components
and repeated processes can also be used to practice the tech-
niques of the present invention.

While particular embodiments of the invention have been
particularly shown and described with reference to specific
embodiments thereof, it will be understood by those skilled in
the art that changes in the form and details of the disclosed
embodiments may be made without departing from the spirit
or scope of the invention. For example, embodiments of the
present invention may be employed with a variety of compo-
nents and should not be restricted to the ones mentioned
above. It is therefore intended that the invention be inter-
preted to include all variations and equivalents that fall within
the true spirit and scope of the present invention.

US 9,170,911 B1

13

What is claimed is:

1. A method for monitoring transactions between a hard
logic system and a configurable logic system, the method
comprising:

receiving, on a monitoring circuit, a first transaction

addressed to a first slave on the configurable logic sys-
tem, the first transaction received from a master on the
hard logic system;

transmitting the first transaction to the first slave;

receiving a first return transaction from the configurable

logic system;

determining an error has occurred in the configurable logic

system; and

transmitting an error message to the master.

2. The method of claim 1, wherein determining the error
has occurred includes determining that a length of data of the
first return transaction is incorrect.

3. The method of claim 1, wherein determining the error
has occurred includes determining that the first return trans-
action is from a second slave on the configurable logic sys-
tem.

4. The method of claim 1, further comprising:

receiving, on the monitoring circuit, a second transaction

addressed to a second slave from the master on the hard
logic system, the second transaction received after the
first transaction;

transmitting the second transaction to the second slave; and

wherein determining an error has occurred includes deter-

mining that a second return transaction associated with
the second transaction is received before the first return
transaction, and the error message indicating that the
second return transaction is an error.

5. The method of claim 4, further comprising:

transmitting a second error message to the master, the

second error message indicating that the first transaction
resulted in an error.

6. The method of claim 1, wherein determining the error
has occurred includes determining that the first return trans-
action is not returned within a time window.

7. The method of claim 6, wherein a duration of the time
window is increased upon an increase in errors detected in the
configurable logic system.

8. The method of claim 1, further comprising:

adding the first transaction to a queue of outstanding trans-

actions; and

determining that the queue of transactions does not exceed

a threshold of outstanding transactions.

9. The method of claim 1, wherein the monitoring circuit is
on the configurable logic system.

10. A circuit for monitoring transactions between a hard
logic system and a configurable logic system, the circuit
comprising:

a monitoring circuit configured to:

receive a first transaction addressed to a first slave on the
configurable logic system, the first transaction
received from a master on the hard logic system;

transmit the first transaction to the first slave;

receive a first return transaction from the configurable
logic system;

10

15

20

25

30

40

45

50

55

14

determine an error has occurred in the configurable logic
system; and
transmit an error message to the master.

11. The circuit of claim 10, wherein determining the error
has occurred includes determining that a length of data of the
first return transaction is incorrect.

12. The circuit of claim 10, wherein determining the error
has occurred includes determining that the first return trans-
action is from a second slave on the configurable logic sys-
tem.

13. The circuit of claim 10, wherein the monitoring circuit
is further configured to:

receive a second transaction addressed to a second slave

from the master on the hard logic system, the second
transaction received after the first transaction;

receive the second transaction to the second slave; and

wherein determining an error has occurred includes deter-

mining that a second return transaction associated with
the second transaction is received before the first return
transaction, and the error message indicating that the
second return transaction is an error.

14. The circuit of claim 13, further configured to:

transmit a second error message to the master, the second

error message indicating that the first transaction
resulted in an error.

15. The circuit of claim 10, wherein determining the error
has occurred includes determining that the first return trans-
action is not returned within a time window.

16. The circuit of claim 15, wherein a duration of the time
window is increased upon an increase in errors detected in the
configurable logic system.

17. The circuit of claim 10, wherein the monitoring circuit
is further configured to:

add the first transaction to a queue of outstanding transac-

tions; and

determine that the queue of transactions does not exceed a

threshold of outstanding transactions.

18. The circuit of claim 10, wherein the monitoring circuit
is on the configurable logic system.

19. The circuit of claim 10, wherein the hard logic system
and the configurable logic system are on the same device.

20. The circuit of claim 10, wherein the hard logic system
and the soft logic system are on separate devices.

21. A circuit for monitoring transactions between a hard
logic system and a configurable logic system, the circuit
comprising:

means for receiving, on a monitoring circuit, a first trans-

action addressed to a first slave on the configurable logic
system, the first transaction received from a master on
the hard logic system;

means for transmitting the first transaction to the first slave;

means for receiving a first return transaction from the con-

figurable logic system;

means for determining an error has occurred in the config-

urable logic system; and

means for transmitting an error message to the master.

#* #* #* #* #*

